Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.411
Filtrar
1.
Nat Commun ; 15(1): 3445, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658533

RESUMEN

Mutations in isocitrate dehydrogenases (IDH) are oncogenic events due to the generation of oncogenic metabolite 2-hydroxyglutarate. However, the role of wild-type IDH in cancer development remains elusive. Here we show that wild-type IDH2 is highly expressed in triple negative breast cancer (TNBC) cells and promotes their proliferation in vitro and tumor growth in vivo. Genetic silencing or pharmacological inhibition of wt-IDH2 causes a significant increase in α-ketoglutarate (α-KG), indicating a suppression of reductive tricarboxylic acid (TCA) cycle. The aberrant accumulation of α-KG due to IDH2 abrogation inhibits mitochondrial ATP synthesis and promotes HIF-1α degradation, leading to suppression of glycolysis. Such metabolic double-hit results in ATP depletion and suppression of tumor growth, and renders TNBC cells more sensitive to doxorubicin treatment. Our study reveals a metabolic property of TNBC cells with active utilization of glutamine via reductive TCA metabolism, and suggests that wild-type IDH2 plays an important role in this metabolic process and could be a potential therapeutic target for TNBC.


Asunto(s)
Proliferación Celular , Ciclo del Ácido Cítrico , Isocitrato Deshidrogenasa , Ácidos Cetoglutáricos , Neoplasias de la Mama Triple Negativas , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Humanos , Femenino , Animales , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Ácidos Cetoglutáricos/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Glutamina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Mutación
2.
PeerJ ; 12: e17106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646478

RESUMEN

Background: Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma. Methods: To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice. Results: We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP. Conclusion: S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.


Asunto(s)
Asma , Calgranulina A , Calgranulina B , Modelos Animales de Enfermedad , Glucólisis , Macrófagos , Ratones Endogámicos BALB C , Animales , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/genética , Calgranulina B/metabolismo , Asma/inmunología , Asma/metabolismo , Asma/patología , Glucólisis/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Ratones , Masculino , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Ovalbúmina , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Citocinas/metabolismo
3.
J Biol Chem ; 299(9): 105111, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37517694

RESUMEN

Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted by a newly constructed detailed enzyme kinetic model of glucose metabolism in the trophozoite-infected red blood cell. Subsequently, we expanded the model to simulate an infected red blood cell culture, including the different asexual blood-stage forms of the malaria parasite. The model simulations were in good agreement with experimental data, for which the measured parasitic volume was an important parameter. Upon further analysis of the model, we identified glucose transport as a drug target that would specifically affect infected red blood cells, which was confirmed experimentally with inhibitor titrations. This model can be a first step in constructing a whole-body model for glucose metabolism in malaria patients to evaluate the contribution of the parasite's metabolism to the disease state.


Asunto(s)
Antimaláricos , Eritrocitos , Glucólisis , Malaria Falciparum , Modelos Biológicos , Terapia Molecular Dirigida , Plasmodium falciparum , Humanos , Acidosis Láctica , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/metabolismo , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/parasitología , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Hipoglucemia , Cinética , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/fisiología , Trofozoítos/patogenicidad , Trofozoítos/fisiología , Terapia Molecular Dirigida/métodos , Carga de Parásitos
4.
Aging Cell ; 22(3): e13764, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36625257

RESUMEN

Cellular senescence leads to the depletion of myogenic progenitors and decreased regenerative capacity. We show that the small molecule 2,6-disubstituted purine, reversine, can improve some well-known hallmarks of cellular aging in senescent myoblast cells. Reversine reactivated autophagy and insulin signaling pathway via upregulation of Adenosine Monophosphate-activated protein kinase (AMPK) and Akt2, restoring insulin sensitivity and glucose uptake in senescent cells. Reversine also restored the loss of connectivity of glycolysis to the TCA cycle, thus restoring dysfunctional mitochondria and the impaired myogenic differentiation potential of senescent myoblasts. Altogether, our data suggest that cellular senescence can be reversed by treatment with a single small molecule without employing genetic reprogramming technologies.


Asunto(s)
Autofagia , Senescencia Celular , Morfolinas , Desarrollo de Músculos , Mioblastos Esqueléticos , Inhibidores de Proteínas Quinasas , Purinas , Senescencia Celular/efectos de los fármacos , Morfolinas/farmacología , Purinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Humanos , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/fisiología , Autofagia/efectos de los fármacos , Insulina/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Glucólisis/efectos de los fármacos , Ciclo del Ácido Cítrico/efectos de los fármacos , Resistencia a la Insulina , Células Cultivadas , Desarrollo de Músculos/efectos de los fármacos
5.
Contrast Media Mol Imaging ; 2022: 2878557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35854778

RESUMEN

Objective: Currently, the role of circ_0094343 (circPTEN) on the chemosensitivity of CRC remains to be clarified. This study aimed to investigate the role and mechanism of exosome-delivered circ_0094343 in the proliferation, glycolysis, and chemosensitivity of colorectal cancer (CRC) cells. Methods: Real-time quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression level of circ_0094343, miR-766-5p, and TRIM67 (Tripartite motif-containing 67) in CRC clinical tissue samples and cells, transmission electron microscopy (TEM) to observe the morphology of exosomes, and nanoparticle tracking analysis (NTA) system to measure the diameter of exosomes. Besides, PKH67 fluorescent labeling was applied for assessing the level of exosome uptake by cells, MTT and cell clone formation assays for detecting cell proliferation and clone formation, respectively, and related kits for checking the glucose consumption, lactate production, and extracellular acidification rate (ECAR) in cells. Dual-luciferase reporter (DLR) gene assay was used for verifying the targeting relationship between circ_0094343 and miR-766-5p, miR-766-5p and TRIM67, RNA immunoprecipitation (RIP) experiment for the interaction between circ_0094343 and miR-766-5p, and Western blot for the protein level of exosome surface antigens (HSP70, CD63) and TRIM67 in cells in exosomes and cell lysates. Results: circ_0094343 was significantly downregulated in CRC tissues, chemotherapy-resistant CRC tissues, and metastatic CRC tissues. Moreover, exosomes-carried circ_0094343 played an inhibitory role in the proliferation, clone formation and glycolysis of HCT116 cells. Meanwhile, it could also improve the chemosensitivity of HCT116 cells to 5-fluorouracil (5-FU), oxaliplatin (L-OHP), and doxorubicin (Dox). Additionally, circ_0094343 acted as a sponge for miR-766-5p, and miR-766-5p targeted and regulated TRIM67. In CRC tissues, miR-766-5p expression was negatively correlated with TRIM67 expression, while circ_0094343 was positively associated with TRIM67. Further, mechanistic validation also demonstrated that circ_0094343 could inhibit HCT116 cell proliferation, clone formation, glycolysis, and chemotherapy resistance via the miR-766-5p/TRIM67 axis. Conclusion: circ_0094343 inhibited the proliferation, clone formation and glycolysis of CRC cells and improved their chemosensitivity to various chemotherapeutic drugs via the miR-766-5p/TRIM67 axis. This finding may provide new insights into the treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas del Citoesqueleto , Exosomas , MicroARNs , ARN Circular , Proteínas de Motivos Tripartitos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Glucólisis/efectos de los fármacos , Glucólisis/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/administración & dosificación , ARN Circular/genética , Transducción de Señal , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(25): e2123265119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35700359

RESUMEN

Metabolic aberrations impact the pathogenesis of multiple sclerosis (MS) and possibly can provide clues for new treatment strategies. Using untargeted metabolomics, we measured serum metabolites from 35 patients with relapsing-remitting multiple sclerosis (RRMS) and 14 healthy age-matched controls. Of 632 known metabolites detected, 60 were significantly altered in RRMS. Bioinformatics analysis identified an altered metabotype in patients with RRMS, represented by four changed metabolic pathways of glycerophospholipid, citrate cycle, sphingolipid, and pyruvate metabolism. Interestingly, the common upstream metabolic pathway feeding these four pathways is the glycolysis pathway. Real-time bioenergetic analysis of the patient-derived peripheral blood mononuclear cells showed enhanced glycolysis, supporting the altered metabolic state of immune cells. Experimental autoimmune encephalomyelitis mice treated with the glycolytic inhibitor 2-deoxy-D-glucose ameliorated the disease progression and inhibited the disease pathology significantly by promoting the antiinflammatory phenotype of monocytes/macrophage in the central nervous system. Our study provided a proof of principle for how a blood-based metabolomic approach using patient samples could lead to the identification of a therapeutic target for developing potential therapy.


Asunto(s)
Desarrollo de Medicamentos , Glucólisis , Metabolómica , Esclerosis Múltiple Recurrente-Remitente , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antimetabolitos/farmacología , Antimetabolitos/uso terapéutico , Desoxiglucosa/farmacología , Desoxiglucosa/uso terapéutico , Desarrollo de Medicamentos/métodos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Esclerosis Múltiple Recurrente-Remitente/sangre , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/metabolismo
7.
Nature ; 607(7919): 593-603, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768510

RESUMEN

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Asunto(s)
5-Metilcitosina , Citosina/análogos & derivados , Glucólisis , Mitocondrias , Metástasis de la Neoplasia , Fosforilación Oxidativa , ARN Mitocondrial , 5-Metilcitosina/biosíntesis , 5-Metilcitosina/metabolismo , Antígenos CD36 , Supervivencia Celular , Citosina/metabolismo , Progresión de la Enfermedad , Glucólisis/efectos de los fármacos , Humanos , Metilación/efectos de los fármacos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Fosforilación Oxidativa/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo
8.
Blood Adv ; 6(14): 4185-4195, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35580333

RESUMEN

Acquired T-cell dysfunction is characteristic of chronic lymphocytic leukemia (CLL) and is associated with reduced efficacy of T cell-based therapies. A recently described feature of dysfunctional CLL-derived CD8 T cells is reduced metabolic plasticity. To what extend CD4 T cells are affected and whether CD4 T-cell metabolism and function can be restored upon clinical depletion of CLL cells are currently unknown. We address these unresolved issues by comprehensive phenotypic, metabolic, transcriptomic, and functional analysis of CD4 T cells of untreated patients with CLL and by analysis of the effects of venetoclax plus obinutuzumab on the CD4 population. Resting CD4 T cells derived from patients with CLL expressed lower levels of GLUT-1 and displayed deteriorated oxidative phosphorylation (OXPHOS) and overall reduced mitochondrial fitness. Upon T-cell stimulation, CLL T cells were unable to initiate glycolysis. Transcriptome analysis revealed that depletion of CLL cells in vitro resulted in upregulation of OXPHOS and glycolysis pathways and restored T-cell function in vitro. Analysis of CD4 T cells from patients with CLL before and after venetoclax plus obinutuzumab treatment, which led to effective clearance of CLL in blood and bone marrow, revealed recovery of T-cell activation and restoration of the switch to glycolysis, as well as improved T-cell proliferation. Collectively, these data demonstrate that CLL cells impose metabolic restrictions on CD4 T cells, which leads to reduced CD4 T-cell functionality. This trial was registered in the Netherlands Trial Registry as #NTR6043.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Linfocítica Crónica de Células B , Sulfonamidas , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sulfonamidas/farmacología
9.
Acta Biomater ; 145: 222-234, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460908

RESUMEN

Cancer cells rely on glycolysis to support a high proliferation rate. Metformin (Met) is a promising drug for tumor treatment that targets hexokinase 2 (HK2) to block the glycolytic process, thereby further disrupting the metabolism of cancer cells. Herein, an intelligent nanomedicine based on glucose deprivation and glycolysis inhibition is creatively constructed for enhanced cancer synergistic treatment. In brief, Met and glucose oxidase (GOx) was encapsulated into histidine/zeolitic imidazolate framework-8 (His/ZIF-8), which was followed by coating with Arg-Gly-Asp (RGD) peptides to obtain the desired nanomedicine (Met/GOx@His/ZIF-8∼RGD). This smart nanomedicine presents the controllable Met and GOx release behavior in an acidic responsive manner. The liberated Met blocks the glycolysis process via suppressing the activity of HK2 and impairing ATP production, which activates the AMP-activated protein kinase (AMPK) pathway and p53 pathway and damages the Warburg effect, eventually leading to cells apoptosis. And the GOx boosts the glucose shortage for starvation therapy by depleting accumulated glucose. According to in vitro and in vivo assays, the combination of glycolysis inhibition and starvation therapy demonstrates efficient cancer cells growth suppression and superior antitumor properties compared to the Met based or GOx-mediated monotherapy. This work provides an advanced therapeutic strategy via disrupting cellular metabolism against cancer. STATEMENT OF SIGNIFICANCE: The obtained nanomedicine (Met/GOx@His/ZIF-8∼RGD) presents the controllable Met and glucose oxidase (GOx) release behavior in an acidic responsive manner. The liberated Met blocks the glycolysis process via suppressing the activity of HK2 and impairing ATP production, which activates the AMP-activated protein kinase (AMPK) pathway and p53 pathway and damages the Warburg effect, eventually leading to cells apoptosis. And the GOx boosts the glucose shortage for starvation therapy by depleting accumulated glucose. The combination of glycolysis inhibition and starvation therapy demonstrate the efficient suppression of cancer cells growth and the superior antitumor properties when compared to the Met based or GOx-mediated monotherapy.


Asunto(s)
Glucosa Oxidasa , Metformina , Neoplasias , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Quimioterapia/métodos , Glucosa , Glucosa Oxidasa/farmacología , Glucosa Oxidasa/uso terapéutico , Glucólisis/efectos de los fármacos , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo
10.
Cell Mol Life Sci ; 79(4): 193, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298717

RESUMEN

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPß, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPß overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPß can be a promising therapeutic approach.


Asunto(s)
Envejecimiento/metabolismo , Axones/patología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Metabolismo Energético , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Axones/efectos de los fármacos , Axones/metabolismo , Secuencia de Bases , Proteína beta Potenciadora de Unión a CCAAT/genética , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Metabolismo Energético/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Hígado/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factores de Transcripción NFATC/metabolismo , Proyección Neuronal/efectos de los fármacos , Polímeros/metabolismo , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley , Células Receptoras Sensoriales/patología , Transducción de Señal/efectos de los fármacos
11.
Mol Oncol ; 16(11): 2274-2294, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35298869

RESUMEN

Hepatocellular carcinoma (HCC) is characterized by rapid growth, early vascular invasion, and high metastasis. Currently available US Food and Drug Administration (FDA)-approved drugs show low therapeutic efficacy, limiting HCC treatment to chemotherapy. We designed and synthesized a novel small molecule, SCT-1015, that allosterically activated adenosine monophosphate-activated protein kinase (AMPK) to suppress the aerobic glycolysis in HCC. SCT-1015 was shown to bind the AMPK α and ß-subunit interface, thereby exposing the kinase α domain to the upstream kinases, resulting in the increased AMPK activity. SCT-1015 dramatically reduced HCC cell growth in vitro and tumor growth in vivo. We further found that AMPK formed protein complexes with hypoxia-inducible factor 1-alpha (HIF1α) and that SCT-1015-activated AMPK promoted hydroxylation of HIF1α (402P and 564P), resulting in HIF1α degradation by the ubiquitin-proteasome system. With declined HIF1α abundance, many glycolysis-related enzymes were downregulated, suppressing aerobic glycolysis, and promoting oxidative phosphorylation. These results indicated that SCT-1015 channeled HCC cells into an unfavorable metabolic status. Overall, we reported SCT-1015 as a direct activator of AMPK signaling that held therapeutic potential in HCC.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antineoplásicos , Carcinoma Hepatocelular , Glucólisis , Neoplasias Hepáticas , Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/enzimología , Línea Celular Tumoral , Activación Enzimática , Glucólisis/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/enzimología , Transducción de Señal
12.
Reprod Biol Endocrinol ; 20(1): 45, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255928

RESUMEN

Diabetes mellitus (DM), a high incidence metabolic disease, is related to the impairment of male spermatogenic function. Spermidine (SPM), one of the biogenic amines, was identified from human seminal plasma and believed to have multiple pharmacological functions. However, there exists little evidence that reported SPM's effects on moderating diabetic male spermatogenic function. Thus, the objective of this study was to investigate the SPM's protective effects on testicular spermatogenic function in streptozotocin (STZ)-induced type 1 diabetic mice. Therefore, 40 mature male C57BL/6 J mice were divided into four main groups: the control group (n = 10), the diabetic group (n = 10), the 2.5 mg/kg SPM-treated diabetic group (n = 10) and the 5 mg/kg SPM-treated diabetic group (n = 10), which was given intraperitoneally for 8 weeks. The type 1 diabetic mice model was established by a single intraperitoneal injection of STZ 120 mg/kg. The results showed that, compare to the control group, the body and testis weight, as well the number of sperm were decreased, while the rate of sperm malformation was significantly increased in STZ-induced diabetic mice. Then the testicular morphology was observed, which showed that seminiferous tubule of testis were arranged in mess, the area and diameter of which was decreased, along with downregulated anti-apoptotic factor (Bcl-2) expression, and upregulated pro-apoptotic factor (Bax) expression in the testes. Furthermore, testicular genetic expression levels of Sertoli cells (SCs) markers (WT1, GATA4 and Vimentin) detected that the pathological changes aggravated observably, such as the severity of tubule degeneration increased. Compared to the saline-treated DM mice, SPM treatment markedly improved testicular function, with an increment in the body and testis weight as well as sperm count. Pro-apoptotic factor (Bax) was down-regulated expression with the up-regulated expression of Bcl-2 and suppression of apoptosis in the testes. What's more, expression of WT1, GATA4, Vimentin and the expressions of glycolytic rate-limiting enzyme genes (HK2, PKM2, LDHA) in diabetic testes were also upregulated by SPM supplement. The evidence derived from this study indicated that the SMP's positive effect on moderating spermatogenic disorder in T1DM mice's testis. This positive effect is delivered via promoting spermatogenic cell proliferation and participating in the glycolytic pathway's activation.


Asunto(s)
Diabetes Mellitus Experimental , Glucólisis/efectos de los fármacos , Infertilidad Masculina , Espermatogénesis/efectos de los fármacos , Espermidina/farmacología , Animales , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/metabolismo , Complicaciones de la Diabetes/patología , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Infertilidad Masculina/tratamiento farmacológico , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Semen , Espermatogénesis/fisiología , Espermidina/uso terapéutico , Estreptozocina , Testículo/efectos de los fármacos , Testículo/metabolismo
13.
Toxicol Appl Pharmacol ; 438: 115910, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35134435

RESUMEN

Environmental exposure to formaldehyde is known to be associated with cancers and many other diseases. Although formaldehyde has been classified as a group I carcinogen, the molecular mechanisms of its carcinogenicity are still not fully understood. Formaldehyde is also involved in the folate-driven one­carbon metabolism, and excess amount of formaldehyde was found to interfere with other metabolic pathways including glycolysis, which can enhance Warburg effect and induce immunosuppression in tumor microenvironment. Therefore, different tumor cells and THP-1 derived macrophages were utilized to explore the metabolism-related effects induced by formaldehyde at environmentally relevant concentrations. Significant increases of glucose uptake, glycolysis levels, HIF-1α signaling and methylglyoxal production were observed in tumor cells treated with 20 and 50 µM formaldehyde for 24 h, and the overproduced methylglyoxal in the conditioned medium collected from the tumor cells treated with formaldehyde triggered macrophage polarization towards M2 cells. Myricetin, a flavonol scavenging methylglyoxal, reversed the polarization of macrophages induced by methylglyoxal at 50 µM. These results not only provided essential evidences to reveal the molecular mechanisms of Warburg effect and metabolism-related immunosuppression related to formaldehyde exposure, but also indicated that methylglyoxal could be utilized as a target for therapeutic treatment or prevention of formaldehyde-induced immunotoxicity.


Asunto(s)
Formaldehído/efectos adversos , Piruvaldehído/metabolismo , Macrófagos Asociados a Tumores/efectos de los fármacos , Efecto Warburg en Oncología/efectos de los fármacos , Células A549 , Línea Celular Tumoral , Glucólisis/efectos de los fármacos , Células HCT116 , Células HeLa , Humanos , Células Jurkat , Células MCF-7 , Activación de Macrófagos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células TH1 , Microambiente Tumoral/efectos de los fármacos , Macrófagos Asociados a Tumores/metabolismo
14.
Life Sci ; 295: 120411, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35181310

RESUMEN

AIMS: Virus-infected host cells switch their metabolism to a more glycolytic phenotype, required for new virion synthesis and packaging. Therefore, we investigated the effect and mechanistic action of glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) on virus multiplication in host cells following SARS-CoV-2 infection. MAIN METHODS: SARS-CoV-2 induced change in glycolysis was examined in Vero E6 cells. Effect of 2-DG on virus multiplication was evaluated by RT-PCR (N and RdRp genes) analysis, protein expression analysis of Nucleocapsid (N) and Spike (S) proteins and visual indication of cytopathy effect (CPE), The mass spectrometry analysis was performed to examine the 2-DG induced change in glycosylation status of receptor binding domain (RBD) in SARS-CoV-2 spike protein. KEY FINDINGS: We observed SARS-COV-2 infection induced increased glucose influx and glycolysis, resulting in selectively high accumulation of the fluorescent glucose analog, 2-NBDG in Vero E6 cells. 2-DG inhibited glycolysis, reduced virus multiplication and alleviated cells from virus-induced cytopathic effect (CPE) in SARS-CoV-2 infected cells. The progeny virions produced from 2-DG treated cells were found unglycosylated at crucial N-glycosites (N331 and N343) of the receptor-binding domain (RBD) in the spike protein, resulting in production of defective progeny virions with compromised infective potential. SIGNIFICANCE: The mechanistic study revealed that the inhibition of SARS-COV-2 multiplication is attributed to 2-DG induced glycolysis inhibition and possibly un-glycosylation of the spike protein, also. Therefore, based on its previous human trials in different types of Cancer and Herpes patients, it could be a potential molecule to study in COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Desoxiglucosa/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Adenosina Trifosfato/metabolismo , Animales , Antivirales/farmacología , COVID-19/metabolismo , COVID-19/virología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Glicosilación , Interacciones Huésped-Patógeno/efectos de los fármacos , Manosa/farmacología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Virión/efectos de los fármacos , Virión/patogenicidad , Replicación Viral/efectos de los fármacos
15.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163171

RESUMEN

Excessive glucose metabolism and disruptions in Wnt signaling are important molecular changes present in oral cancer cells. The aim of this study was to evaluate the effects of the combinatorial use of glycolysis and Wnt signaling inhibitors on viability, cytotoxicity, apoptosis induction, cell cycle distribution and the glycolytic activity of tongue carcinoma cells. CAL 27, SCC-25 and BICR 22 tongue cancer cell lines were used. Cells were treated with inhibitors of glycolysis (2-deoxyglucose and lonidamine) and of Wnt signaling (PRI-724 and IWP-O1). The effects of the compounds on cell viability and cytotoxicity were evaluated with MTS and CellTox Green tests, respectively. Apoptosis was evaluated by MitoPotential Dye staining and cell cycle distribution by staining with propidium iodide, followed by flow cytometric cell analysis. Glucose and lactate concentrations in a culture medium were evaluated luminometrically. Combinations of 2-deoxyglucose and lonidamine with Wnt pathway inhibitors were similarly effective in the impairment of oral cancer cells' survival. However, the inhibition of the canonical Wnt pathway by PRI-724 was more beneficial, based on the glycolytic activity of the cells. The results point to the therapeutic potential of the combination of low concentrations of glycolytic modulators with Wnt pathway inhibitors in oral cancer cells.


Asunto(s)
Neoplasias de la Lengua/metabolismo , Vía de Señalización Wnt/fisiología , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desoxiglucosa/farmacología , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Indazoles/farmacología , Pirimidinonas/farmacología , Lengua/metabolismo , Lengua/patología , Neoplasias de la Lengua/tratamiento farmacológico , Vía de Señalización Wnt/genética
16.
Food Funct ; 13(4): 1774-1784, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35112684

RESUMEN

Antibiotic-resistant strains of Streptococcus uberis (S. uberis) frequently cause clinical mastitis in dairy cows resulting in enormous economic losses. The regulation of immunometabolism is a promising strategy for controlling this bacterial infection. To investigate whether taurine alleviates S. uberis infection by the regulation of host glycolysis via HIF1α, the murine mammary epithelial cell line (EpH4-Ev) and C57BL/6J mice were challenged with S. uberis. Our data indicate that HIF1α-driven glycolysis promotes inflammation and damage in response to the S. uberis challenge. The activation of HIF1α is dependent on mTOR-mediated ROS production. These results were confirmed in vivo. Taurine, an intracellular metabolite present in most animal tissues, has been shown to effectively modulate HIF1α-triggered metabolic reprogramming and contributes to a reduction of inflammation, which reduces mammary tissue damage and prevents mammary gland dysfunction in S. uberis-induced mastitis. These data provide a novel putative prophylactic and therapeutic strategy for amelioration of dairy cow mastitis and bacterial inflammation.


Asunto(s)
Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estreptocócicas/metabolismo , Taurina/farmacología , Animales , Línea Celular , Femenino , Glándulas Mamarias Animales/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Streptococcus/efectos de los fármacos
17.
Artículo en Inglés | MEDLINE | ID: mdl-35219959

RESUMEN

The gut microbiota (GM) and metabolites are important factors in mediating the development of type-2 diabetes mellitus (T2DM). An imbalance in the gut microbiota and metabolites can disrupt the function of the intestinal barrier, cause changes in the permeability of the intestinal mucosa and promote the immune inflammatory response, thereby aggravating the fluctuation of blood glucose level and promoting the occurrence and development of the chronic complications of DM. Manipulating the GM and metabolites is a promising therapeutic intervention and is being studied extensively. Shenqi compound (SQC) is a traditional Chinese medicine formulation, which has been widely used to improve T2DM. Studies have demonstrated that SQC can reduce glycemic variability, alleviate the inflammatory response, etc. However, its underlying mechanism remains unknown. Therefore, in this experiment, We administered SQC to Goto-Kakizaki (GK) rats and evaluated its effect on blood glucose homeostasis and the intestinal mucosal barrier. We identified the profiles of the GM and metabolites with the aid of 16S rDNA gene sequencing and non-target metabolomics analysis. It showed that SQC intervention could reduce glycemic variability, regulate serum levels of glucagon and insulin, and improve injury to the intestinal mucosal barrier of GK rats. In the gut, the ratio of bacteria of the phyla Bacteroidetes/Firmicutes could be improved after SQC intervention. SQC also regulated the relative abundance of Prevotellaceae, Butyricimonas, Bacteroides, Blautia, Roseburia, Lactobacillus, and Rothia. We found out that expression of 40 metabolites was significantly improved after SQC intervention. Further analyses of metabolic pathways indicated that the therapeutic effect of SQC might be related predominantly to its ability to improve gluconeogenesis/glycolysis, amino acid metabolism, lipid metabolism, citrate cycle, and butanoate metabolism. These results suggest that SQC may exert a beneficial role in T2DM by modulating the GM and metabolites in different pathways.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/microbiología , Medicamentos Herbarios Chinos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Aminoácidos/metabolismo , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Gluconeogénesis/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Insulina/sangre , Masculino , Ratas , Ratas Wistar
18.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216404

RESUMEN

Tyrosine kinase inhibitors (TKIs) are associated with cardiac toxicity, which may be caused by mitochondrial toxicity. The underlying mechanisms are currently unclear and require further investigation. In the present study, we aimed to investigate in more detail the role of the enzyme complexes of the electron transfer system (ETS), mitochondrial oxidative stress, and mechanisms of cell death in cardiac toxicity associated with imatinib and sorafenib. Cardiac myoblast H9c2 cells were exposed to imatinib and sorafenib (1 to 100 µM) for 24 h. Permeabilized rat cardiac fibers were treated with both drugs for 15 min. H9c2 cells exposed to sorafenib for 24 h showed a higher membrane toxicity and ATP depletion in the presence of galactose (favoring mitochondrial metabolism) compared to glucose (favoring glycolysis) but not when exposed to imatinib. Both TKIs resulted in a higher dissipation of the mitochondrial membrane potential in galactose compared to glucose media. Imatinib inhibited Complex I (CI)- and CIII- linked respiration under both conditions. Sorafenib impaired CI-, CII-, and CIII-linked respiration in H9c2 cells cultured with glucose, whereas it inhibited all ETS complexes with galactose. In permeabilized rat cardiac myofibers, acute exposure to imatinib and sorafenib decreased CI- and CIV-linked respiration in the presence of the drugs. Electron microscopy showed enlarged mitochondria with disorganized cristae. In addition, both TKIs caused mitochondrial superoxide accumulation and decreased the cellular GSH pool. Both TKIs induced caspase 3/7 activation, suggesting apoptosis as a mechanism of cell death. Imatinib and sorafenib impaired the function of cardiac mitochondria in isolated rat cardiac fibers and in H9c2 cells at plasma concentrations reached in humans. Both imatinib and sorafenib impaired the function of enzyme complexes of the ETS, which was associated with mitochondrial ROS accumulation and cell death by apoptosis.


Asunto(s)
Cardiotoxicidad/etiología , Mesilato de Imatinib/efectos adversos , Mitocondrias Cardíacas/efectos de los fármacos , Mioblastos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sorafenib/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Transporte de Electrón/efectos de los fármacos , Glucólisis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas
19.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216429

RESUMEN

Colorectal cancer (CRC) is the third leading cause of death in men and the fourth in women worldwide and is characterized by deranged cellular energetics. Thymoquinone, an active component from Nigella sativa, has been extensively studied against cancer, however, its role in affecting deregulated cancer metabolism is largely unknown. Further, the phosphoinositide 3-kinase (PI3K) pathway is one of the most activated pathways in cancer and its activation is central to most deregulated metabolic pathways for supporting the anabolic needs of growing cancer cells. Herein, we provide evidence that thymoquinone inhibits glycolytic metabolism (Warburg effect) in colorectal cancer cell lines. Further, we show that such an abrogation of deranged cell metabolism was due, at least in part, to the inhibition of the rate-limiting glycolytic enzyme, Hexokinase 2 (HK2), via modulating the PI3/AKT axis. While overexpression of HK2 showed that it is essential for fueling glycolytic metabolism as well as sustaining tumorigenicity, its pharmacologic and/or genetic inhibition led to a reduction in the observed effects. The results decipher HK2 mediated inhibitory effects of thymoquinone in modulating its glycolytic metabolism and antitumor effects. In conclusion, we provide evidence of metabolic perturbation by thymoquinone in CRC cells, highlighting its potential to be used/repurposed as an antimetabolite drug, though the latter needs further validation utilizing other suitable cell and/or preclinical animal models.


Asunto(s)
Benzoquinonas/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Glucólisis/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Células HCT116 , Hexoquinasa/metabolismo , Humanos , Nigella sativa/efectos de los fármacos , Nigella sativa/metabolismo , Transducción de Señal/fisiología
20.
Sci Rep ; 12(1): 3049, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197552

RESUMEN

Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 µM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Astrocitos/metabolismo , Crotonatos/farmacología , Hidroxibutiratos/farmacología , Inflamación/metabolismo , Nitrilos/farmacología , Toluidinas/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Quimiocinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Lipocalina 2/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA